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ABSTRACT

The efficient estimation of geoid and sea state parameters (waveheight

standard deviation and asymmetry and scattering cross-section density) is

considered: the optimum processing structures, including maximum

likelihood estimators, and their accuracy limits are given for a model

accounting for random surface reflectivity, sea height, and additive noise.

and allowing for arbitrary radar system parameters, based on the assumption

the received signal is a sample function of a normal random process.

The integral equation associated with the " Gaussian signal in

Gaussian noise" inference problem was solved previously in " pulse-

determined" and " threshold" cases and is here solved approximately in

the quasi-stationary case of pulse resolution small relative to the returned

signal's extent and exactly in a specific case.. It is shown that the optimum

processing is generally a mixture of coherent and incoherent integrations

which may be viewed as a weighted summation of received power of the

match-filtered received data. There is a signal-to-noise ratio dependent

best pulse bandwidth; approximate and exact accuracy limits are given.

The efficient estimates are generally correlated, the most strong_ coupling_

between geoid and asymmetry estimates and between wave height standard

deviation and reflectivity e.stimates. A brief exemplification of system

design usage is given.



INTRODUC TION

Radar altimetry has been proposed and is being used to obtain

measurements, over the sea from a satellite, of geoid and sea state

parameters which are expected to be highly useful in geodesy, oceanography,

and meteorology both for scientific uses and applications such as traffic

routing. The accuracy required of geoid measurement for " dynamic

oceanography" is about 0.1 meter; since tides, currents, and wind-driven

waves cause sea surface perturbations much greater than this.and since the

reflection from the sea surface is a random phenomena, the extraction of

geoid information from the " smeared" and random returned pulse

requires (at least implicitly) joint estimation of tides, currents, and

sea state parameters. It does not appear possible for altimetry itself-to

separate tidal, current, and geoidal variations: exterior data must be

provided for this. But sea state parameters do directly influence the

nature of the altimeter's returned signal from the sea and must be estimated,

at least implicitly, whether or not desired in themselves, in order to obtain

a good geoid estimate.

-We-consider- here the best-single -pulse joint measurement of the

_geoid parameter - the delay of the returned pulse from the mean sea level

(which here inseparably includes tide and current changes) - and sea state

parameters which are here taken as the radar scattering cross-section

density, standard deviation of the wave-height distribution (which is assumed zero



mean since any nonzero mean cannot be distinguished from the geoid by

definition) and an asymmetry parameter accounting for the well-known

asymmetry of ocean waves. Such measurements can then.be combined with

adjunct data - e. g., laser measurements of orbit - to estimate the geoid;

there are well-known methods (e. g., least-squares, extended Kalman

filtering) to do this and they are being so used. Since it appears that

practical altimeter designs are possible that provide accurate measurements

even on a single pulse, a linear observation model in a recursive estimation

scheme may be attractive; a general statement of a recursive estimation

problem appears to be very involved, hence the emphasis on optimizing

a single pulse's estimates.

The present discussion is an extension of E l] where estimation of geoid

only was considered. The introductory remarks of [1] with respect to

theoretical context and desirability of efficient design apply here also and

we adopt the model for the returned signal and the notation of [1]. In

particular the signal random process covariance function in the symmetric

case is

2x Zx
Rs(tt) = K dyq(y) dxph() F(t o- c ) F(t2 T -Y- (1)

0 -0

where F is the complex modulation of the transmitted pulse, T the delay to

geoid, c the velocity of light, ph the univariate probability density function

of wave height which depends on the unknown sea-state parameter oh ,

q(y) go(c Ry) H(cR y) where go is the reflectivity density and H is the

fourth power of the modulus of the far-field antenna pattern, both a function of viewing

angle from the vertical, and K -2r (k/4TR 4 (cRo/2) where k-ZTT /, X the
0



mean wavelength of the radiated pulse and R' = cT /2. It has been assumed

that the reflectivity of the sea is a random field with a reflectivity density

g(x, y) = gl(x, y)/secy(x, y) where y(x, y) is the angle between the normal to

the gross roughness surface of the sea and the altimeter boresight direction

and gl(x, y) is a complex random function of zero mean and spatially

incoherent - that is, its covariance function is of the form g 0 (x1, 1)

6(xl-xz, yl-y 2 ). (See Fig. 1 for the geometry of the problem.)



For the narrow antenna patterns of interest here, go(cR y) o9 o0) go

generally an unknown parameter* that must be estimated along with the

unknown geoid delay (T7 ) and sea state parameter ah . It is then convenient

to define q1 (y) = H(fcy) and rewrite Eq. 1 in the form

P 2
Rs(t I ',t 2 ) go J f )F(t 1 -)F(t - ) d (la)

where the convolution

f(-r : ohZ)  Kc q ( ) h  -To - n)] di (2)

2 Z
Note the unknown parameters (To, 'h go) enter via gof(t -; 0 h ) - which

is denoted more briefly f.().

As the received, scattered signal is modelled as a sample function of

a nonstationary, zero mean, complex Gaussian random process - an

assumption with some theoretical and experimental support - whose

covariance function depends on geoid and sea state parameters, and is

received along with additive, white thermal (Gaussian) noise, the likelihood

ratio - necessary for statistical inference - involves the quadratic functional

of the received data appropriate to the " Gaussian signal in Gaussian noise

problem" [1, 2] having a kernel function determined by an integral equation

that cannot, unfortunately, be solved in the generality desired here. Two

special cases were solved in [1], the " threshold" case and " pulse

determined" case, and those results are here extended to the present joint

estimation problem: however, the pulse determined case would a priori

seem to be possibly unattractive for sea state estimation.

*The relation between go and 0 , the radar scattering cross-section density,

is o = go/ .
OO



We show here that in the threshold case the pulse resolution to best

estimate sea state should be somewhat smaller than to best estimate geoid

but still of the order of the received (smeared) pulse duration. To adopt

this result is generally disquieting because there might wellbe a best

"SNR per sample" (resolution element) analogously to the diversity communication

problem, and if so, a SNR-dependent, possibly finer resolution would be

dictated.

Therefore we are led to consider an approximation appropriate to the

case when the pulse resolution is small relative to the received pulse

duration as spread by the antenna pattern and wave height distribution. We

are able to approximately solve the required integral equation in this

"quasi-stationary" case, observe the structure of the optimum processor,

and calculate bounds on estimation accuracy - which are attainable asymptot-

ically by maximum likelihood estimation. As an example application to altimeter

system design, there is shown to be a best pulse resolution for estimating

geoid and sea state, dependent upon SNR. These results can be used for

efficient altimeter system design as exemplified in [1].

Also the integral equation is solved exactly under a specific set of

assumptions; the results generally agree with the results of the quasi-

stationary approximations when the signal bandwidth (roughly-see below for

more precise statement) is relatively large.

Since the received signal is modeled as a sample function of a random

.process, the better known theory appropriate to a signal known except for a

set of parameters (which leads to the matched filter, etc. ) is not applicable here.

For comparison, the estimate of delay and spread for a non-random signal is

discussed in the Appendix.



SUMMARY OF RESULTS

The data-dependent part of the log-likelihood ratio, which describes

the operations on the data Z t, te T, performed by the receiver/processor is

[1, 2] the quadratic functional

Q(Z) = n dt1 Z(tl) dt2 Z(t2 ) k(t1 , t(3)

T T

where the kernel k(t 1 , t 2 ) is the solution to the integral equation

l k(t, t 2 ) + Rs(t 1 , t 3 ) k(t 3 , t 2 ) dt 3 = Rs(tl, t 2 ), t t 2  T. (4)
T

T is the time during which the scattered pulse is received and will be

assumed large relative to the support of R ; 1 is the spectral density of

the complex white noise.

Solutions for k. - We have already solved the integral equation (4) in

[1] in two special cases. First, in the " threshold case" (see 11 for

definition) of, roughly, low signal-to-noise ratio,

k(t t2 1 R t2  . (4a)

which gives

Q() 2 q(-t)*h - t (3a)

7 0 t= T

which can be calculated by the processor shown in Fig. 2. As discussed in

S1) this processor performs both coherent and incoherent integration in an

intuitively satisfying manner; since the scale of q involves go aril ph depends

on CYh (and the asymmetry parameter introduced below) these matched

filters will depend on sea state parameter estimates.



Second, in the " pulse determined" case (see l] for definition) where

the radiated pulse has insufficient bandwidth to resolve the wave height and

antenna spot smearing,

k(t1, t 2 ) = ko F(tl- o) F(t 2 -o) (4b)

where ko cE /(o + F8 F), F the energy of F and a =Kj q(y)dy. Now

S (z) W F (-t)*Z(t) (3b)

o

which, aside from scale, agrees with the results of the threshold case with

q(-t) E ph ( -  t) S 6 (t) - reasonably because the transmitted pulse does not

" see" the waves and antenna spot in this case. The calculation of 3b is

accomplished by the processor of Fig. 2 with the matched filters of impulse

responses q(-t) and ph(-ct/2) omitted. Such a processor is therefore

independent of the sea state parameters (aside from go ) which is an advantage.

if on*ly geoid estimation is required.

We here solve this integral equation in two more cases: Thus, thirdly,

in the " quasi-stationary" case where the extent of F (after matched filtering

if dispersed modulation is employed by the transmitter) is small relative

to the distance over which q(t) * ph(E t) varies significantly - that is, the gross

..----waves and antenna spot are relatively well resolved - we find that k(tl, t 2 )

is approximable by a slowly varying impulse response kl(t1 , tl-t2). That is,

for each tl , in a region of the order of the transmitted pulse resolution, k

looks like the impulse response of a linear, time-invariant filter. Its

" quasi-stationary" transfer function is shown below to be approximately

k(tl, ) = (4c)
rlo + f,(tl)lF ()l



and

f ,(t)
Q(z) - (t) f *(t) dt (3c)

oT o

which is a weighted sum of the received instantaneous power after matched

filtering to the transmitted pulse. (Here BE 2rrF/ F where 0F is the bandwidth of F

which, for the specific form (3c), was assumed constant over its spectrum.)

The calculation of Q(z) is again accomplished by the processor configuration

of Fig. 3 except the matched filters q and ph are replaced by a filter of

impulse response f,(t)/Ffl /0+ f (t)] . This form of processing has in fact

been a starting point for practical designs [ 5] . A sketch of the weighting

function w(t) -f *(t)' r /P+ f,(t)]- for a crudely approximated f is shown

in Fig. 3 ; exact calculations are easily made for a given f,.

It should be noted that w(t) is relatively broad in its extent. The weighting

function does depend on the sea state parameter estimates.

The first case overlaps the second and third cases which are mutually

exclusive; taken together they lend great weight to using a processor of the



an envelope detector and filtering (incoherent integration), the exact filter

shape dependent on signal-to-noise ratio and sea state parameters. Such

a processor is eminently practical also. Again if only geoid estimation is

desired this filter may be omitted and satisfactory performance is practically

achievable Fl] without need for sea state parameter estimation.

Fourthly and finally, if it is assumed that the transmitted pulse

spectrum is constant over its bandwidth and that q cph is the Fourier transform

of a rational function, an integral equation equivalent to (4) can be solved

exactly. The method of solution is well known and has been reduced to

routine calculation which gets sufficiently involved to impede easy under-

standing. A relatively simple exponential form for (qh was assumed and the

calculations performed to find k exactly (Eq. 25 below). It can be expected

in practice that the system parameters will be such (see below) that the

resulting processor has the realization shown in Fig. 2 where the filters

q and p are replaced by a filter transfer function

k (w) = k e , -< < . (3d)

1/2
Note that its bandwidth is about B (T /2 4) where d is a measure

of the spread or smear of the returned pulse: this can be seen to be in

agreement with the result under the quasi-stationary case.

Maximum likelihood estimates. - By definition the maximum likelihood

.estimates (MLE's ' are.those values of the unknown parameters that

maximize the likelihood ratio or, equivalently, the natural logarithm of the

likelihood ratio which here has the form [- + Q(z)]; a is independent of the

data and here can be shown 1] to be independent of geoid parameter T7 but

generally will depend on the sea state parameters. * Thus the maximum

*Finding useful "closed" forms for m corresponds in difficulty to find k, the

kernel of 0.



likelihood estimate of T is easily seen to be found by choosing the time of max-
o

imum output of the low pass filter for any and all of the special cases discussed.

Said filter must be adjusted over a trial set of sea state parameters to

maximize the output: in principal - but not necessarily practically - this may

be done " in parallel" on one pulse return.

Necessary conditions for the MLE's are found, of course, by setting the

derivatives of the log-likelihood ratio with respect to each unknown parameter

equal to zero. We show below that in the quasi-stationary case and when F

has constant spectrum over its bandwidth 0F, that these conditions are

0 = dt' t - 1/ B + f (t) .(5)

JT dr /B+f (t)] B
o F

These likelihood equations can have solutions for each stationary point including

the true maximum and are therefore meaningful in suggesting processors use-
A

ful after initial acquisitions to a close approximation of the estimates 0 to

the true values o.-( 01 2 0 3 , 04) ( o Oh g' 0, 04)' 4 the asymmetry

parameter. The functions v.(t) (bf*b 8 )F /+ (t)] may be. regarded as

weighting functions and are sketched in Fig. 4. for a crude approximation to

.a.typical f, when ph is symmetric.

-.--.--- Such-likelihood equations have often been used to suggest feedback

structures to find estimates by operating on a sequence of received pulses and

driving certain error signals to zero. For example, the form of v2(t)

suggests the use of two time " gates", one with the weighting function equal

to v (t) for -a <t < o and the other with the weighting function equal to the



the negative -of v (t) for o < t < o+ 4. Each gate output -weighted

instantaneous power-is summed and the difference formed as an error signal

which readjusts the position of the gating pair. The integral of v2(t) times

[n /+ f(t)3 is computed separately and applied as a bias to the difference.
o

Similarly for v1 and v 3 .

Performance. - It is well known F 4] that the covariance matrix of

efficient estimates - those unbiased estimates of minimum possible error

variance which are, when they exist, MLE's and whose performance is

achieved asymptotically by MLE 's - is the inverse of the matrix C of

elements c..~ E B 2n A(z)/o e.j ) where A(z) is the likelihood ratio

and f 0i. the unknown parameters to be estimated. Here the ( cij can be

expressed in an integral involving Rs and k (eq. 19 below, e. g.). For

example, in the quasi-stationary case we have the approximation. '

c = f,,(t) f,(t) dt

< r he " (fu) f,(W )dW. (6)

1 J

Here 4- BF/(' /B+ gof(o)) and we have assumed F (w )1j= 2rreF /2F

for Jwl < CF/Z and zero otherwise (B F = F/Zn ); also we have made a

certain approximation with regard to the general shape of f, - see below.

Here the Fourier transform of f is f(w) = go K q (w)Cp wl(c/2)].

exp(-iw T ), where cph is the univariate characteristic function (the Fourier

transform of ph ) of the gross wave height.

An often used [4] approximation to the gross wave distribution is

normal; but it is usually still better approximated by incorporating a



parameter that accounts for the observed asymmetry. This is conveniently

done by using a truncated Gram-Charlier series r 3]:
-_ 2§2/2

ph( ) = e h * (1-i64a

when 0 E h 3] /3 is proportional to the (assumed small) third moment
4a

of the gross wave height distribution; note 04a - 0 if ph is symmetric.

We can now compute the ( c..3 and invert C to find the desired

covariance matrix; its diagonal elements are the error variances of the

* * * $ 3
efficient estimates (T , a , g , 0 )(4 0 4a/(C/2) , 0 C Oh/(c/2) ) :

, 1 1 1
Var[ 4 -2 (7a)

o 2 2 M(1)
g 1- p14

vae* 1 1 1Vart = - - -(7b)
4 2 2 M(3) ' 7b)

go -p 14

ar 1 1 1 (7c)
Var (0 = 1-232 23 M(Z)

and 2

Vargo*3 = 1 1 goVar g 0 -(7d)o a 2 2 M(O) 7d
g 1-P

o 23

where

2 M( 2)
14 M(1)M(3) '

2 M(1)
23 M(O)M(2) (7f)

and

1 2k 2
M(k) E 2 LO akl f (w)I dw , (7g)

1(W) = K-l(w)cph(w/(c/2))/ -- 0. The correlation coefficient of the
4a

efficient estimates of geoid delay To and asymmetry parameter 04 is p14;

the correlation coefficient of the efficient estimates of gross wave height



standard deviation a-and sea reflectivity density go is 023; all other correlations

are zero to this first order (in 04a) approximation; also P 1 4 and P2 3 are

independent of 04a to first order..

Consider, for example, the error variance of the efficient estimate

of the delay 7 to the geoid. It is uncorrelated with the efficient
o o

estimate g of reflectivity density though, because additive noise is

present, its magnitude depends on the true reflectivity density go: this is

agreeable. It is also uncorrelated with the efficient estimate a of the

standard deviation aof the gross wave height distribution - a second

moment - though its magnitude depends on this measure of (symmetric)

spread as is agreeable because greater spreading means greater returned

energy which, if processed properly (as it is), should enhance the geoid

estimate. Finally it is correlated with the efficient estimate of the asymmetry

parameter: errors in eltimating the asymmetry of the gross wave height

distribution would be expected to lead to geoid location errors. Finally, we

2 2
may write M(1) =- f 2 where 0f is interpretable as a radius of gyration

~2
measure of the bandwidth of f ( provided the centroid of f I is zero):

this too is agreeable - though not with the superficial thought that the

bandwidth of F, the transmitted modulation, determines geoid measurement

accuracy.

The correlation between the efficient estimates a and go is also

agreeable: increased total energy is scattered by increasing either a or

go, e.g.

More specifically, assume q1 (w) = 2 'q(O) I exp(- w2 ) so that



If (w)1 2 = 1 exp(-w 2 /2'v)where K =-Kl 1 (0)j and v [2(u~+ 2)] +

29/13, leading to (i-142 "-1
Then one calculates p = 9/15 and 23= 1/3, leading to (1- 1 4  15/6

2 -1
and (1-p 3 ) = 3/2, these being the factors by which the various efficient

estimates' error variances are increased by their being correlated. Or,

to say it another way, the variance of the geoid delay efficient estimate

(e. g. ) is increased by 250% by the lack of knowledge of asymmetry. Further,

after choosing an optimal pulse bandwidth as discussed below,

VarT o10 o 1 (8a)

gol F

Varfgo= __T'i -" (8b)

o TT. g v

ol F

Var4 2 01 (8c)
4 44

C2 9 g v o

and

Varfg 0 = ) (8d)

go 0_1oF

Because of the aforementioned approximation to the shape of f,, it

was of interest to compute the (cij. for a specific, reasonable f, with

a symmetric gross wave height distinction - still under the quasi-stationary

approximation and the specific, reasonable assumption of the shape of 1F.

The results are given below (eqs. 22), the result of tedious residue

integrations; for comparison the approximate forms (Eq. 6) are also

evaluated with results shown in Eq. 23. (Both 22 and 23 result after an

optimum choice of signal bandwidth QF - discussed below.) We see that

agreement is very close.



Also derived below are the error variances of the efficient estimators

of geoid delay To and gross wave height spread ah2 in the threshold case.
0 h

For example, for a normal gross wave height distribution, F constant

2 2 2 ,-2
over its spectrum, and j(u)j2 = q (O)exp(- u 2 /2)\ then setting

80h/c2 + 12 and DE vF, we find

Tj V 2
a =  o . 1 (9a)

o 2go lF rll )

and

Varf a 2 2
:- h = . (9b)

(c/2)4  go 1 e F r22 (a) (

The forms r (S) and r2Z(a) are graphed in Fig. 6 as a function of a.

* 2*
The efficient estimates 7 and a are uncorrelated - as is proved true

o h

for any symmetric ph*

Finally we recall from [1] the variance of the efficient geoid idelay

estimate T in the pulse determined case is
o

1o o+ 2go _r 1
Var(T = 2 (10)

o (2go 0lF)2 A F

where 6F is the radius of gyration measure of the bandwidth of F. (When

FI is constant over its support then aF =



III. APPLICATIONS

Modulation bandwidth. - One of the fundamentally interesting questions

about system design is the choice of transmitted pulse bandwidth to minimize

the estimation error variances.

Taking up first the quasi-stationary case where the bandwidth QF of

the pulse F is such that the " smeared', returned pulse f is highly resolved,

we n6te - Eqs. 7 - that 0F enters only through CL and each of the error

variances are inversely proportional to (. : thus OF should be chosen to

maximize CI = BF/[o B F/F + gof(0)] where B F  F/2rr. It is easily

seen that the maximizing B F is

B F= ooF (lla)
BFI 7•

1

and

F

To interpret this result note that, from Eq. lb, the mean power of the

received signal at time t1 (said mean power will slowly vary in this quasi-
2

stationary case) is as (tl) = Rs(tl, tl) = f(tl) F , where 8F is the energy of

the complex modulation (which is twice the energy of the real pulse modulation);

also the mean power of the complex noise in the bandwidth B is

on o1 BFopt our result states that B F should be chosen so that the signal-n 0 1opt F

to- noise ratio a (0)/G2 is unity (recall we set T 0 for present purpose).
s n o

Since f(t) generally will decrease as It I increases from 0 and since we

nevertheless can only choose one BF, we may expect that a more exact

calculation would result in a somewhat smaller BF , corresponding to

2 2 opt
a ratio a (0)/a somewhat greater than unity. - -- --s n



In fact this last is borne out by examining the results of the exact

calculation, Eqs. 21e, 21f, 21g, for the symmetric case. Each variance

depends on a different factor dependent on a E (1 + Z/O , only through

which 0F enters: a can equivalently be chosen, then, to minimize (e. g.)
F

one of these three forms-call them (L; (a), i= 1,2, 3. It is easily found algebraically

that a=2.minimizes both Var(a ) and Var(go ) and a=(3+/17)/4 -1. 8 minimizes

Var(T ); further, a choice of a=2 increases Var(T ) by less than 2%. Thus the
*0 0

o2 2
choice a=2 is a very good one; then.X/ = (21rf (0)F )/2B = o)s (0)/aF F o F s n

is seen to be (very nearly simultaneously) optimally 3.

This choice of a is allowable,provided,roughly, the signal-to-noise

ratio is large enough so that the quasi-stationary approximation remains

valid: for this we must have 1/D << 0. Since / = 3 (for a= 2),

1/0= 3/a = (3/Z)(1/ae F): thus, more precisely, we must have

o F

<<1.
F

As will be seen below, this condition is easily met in practice even for a

satellite vehicle.

As will be seen in examples below the optimum chbice of a can imply

very large pulse modulation bandwidths. It is therefore of interest to see

how the ( <L_ .(a)l depend on a for a greater than the optimum a - that is,

'bandwidths less than the optimum bandwidth: this dependence is sketeched

in Fig. 5. To conform to the quasi-stationary approximation only a's below

a bound are permissible: that is, for a given 417 PF/ I10, since p F/< < 1,

only values of (4r a 8F/n )(F/) << (4rra 8F/1o) are allowable - which is

to say only aZ <<(41 /T O ) + 1 are allowable. For example, in an application



discussed below (4rra F/rjo ) is greater than 10 so a's somewhat less than,

say, 300 are allowable.

We see that the error variances increase by an order of magnitude as a

-1/2
increases by an order of magnitude: fortunately, roughly, a.- (0F so

that an order of magnitude change in a corresponds to two orders of

magnitude change in F"

The best choice of bandwidth 0F in the threshold case is also examined:

F enters the error variances (Eqs. 9) only through yll(a) andy 22a)'

a V F which are graphed in Fig. 6.

We note that the best choice of a = F /(fixed v) is 0F 4 /v, degrading

only a little the accuracy of the geoid estimate and would represent a

reasonable compromise.



2 2 2 2
As v =8h /c +1 and 0 h is unknown and to be estimated, we

2 2

may have a problem unless 1 >> 8ah /c - that is, unless the antenna

"spot" determines v. Since, from Fig. 1, too small a bandwidth results in

serious degradation, we may wish to choose F a 4 /v.i n , where vmin is

the minimum possible v - very likely determined practically by the

antenna spot (scaled into time and smeared by pointing errors) as the sea

could be smooth (a 2 = 0) occassionally. Presumeably generally bettern

performance could be obtained by an adaptive system which utilized an initial

estimates of Cn to more optimally set fF on the subsequent pulse.

System design. - We briefly indicate how the above results may be.

used in determining reasonable system parameters.

Recall (Eq. 22 of [I])

AoQ
o (13)

32
(4nT) R

0

where A is the antenna aperture area, the scattering cross-section density

a = Trg 0/ (a measured and tabulated parameter), and Q depends on

aperture illumination function shape- e. g. , Q = 1/6 for uniform illumination.

Also (App. III of I)
2

Ro (14)
"1" Ac

Since l1 decreases and a increases with increasing physical antenna

aperture area A, clearly we want A as large as possible - limited by vehicle

size and stability as discussed in 1l].



Suppose certain measurement occuracies are required of geoid and sea

state estimates. Rescaling to spatial distance instead of time extent by

setting T = R /(c/Z) and a = %/(c/2) , we have
o o

* o )_2 2
Var (R ) = (4. 51) + )2] y

o e a hF h
and

( o c/2 ) 2 a 2
Var ( h ) = (3 . 6 0 ) ~ a [1 + ( h

F h

22 6
Assume parameters a =rr , A = m ,R =10 m, and = 1/6: then

o o

14-1
we calculate a.= (3. 84 x 1014 - 1 . If = 2 cm, then c c/2 = 25. 4m. If

-21 -7
l o/= kT = 1.4 x10 , then 1 o/a = 5.38 x10 . Thus (Eqs. 8)

* -3
Va (R )1. 56 x 10 3/

o F

and

-1 2
Var ( ) = 8.03 x 10 /Fah

2 2
provided that a <<(25. 4) , as would be true even in the roughest possible

h

seas. If Var(R ) = 10 m. accuracy is specified then at least
0

F = 1. 56 x 10 - 1 Joule is required, which is rather large; then Var(a )
F h

2. 27/ohm. which of course will exceed any specified value for sufficiently

small ah .

If B is chosen so that a 2(0)/ = 3, then we find BF A 1 KMHz., an
F S. n F

impractically large value. But in order even to be in the fine resolution, or

quasi-stationary case, the resolution 1/B F must be small relative to

* = 0.17 usec, implying BF > >5. 9 MHz.

Suppose a more practical bandwidth of B F = 33 MHz, which is a

thirtieth of the optimum bandwidth: then it is easily calculated that now



a = 10. .(We already saw that a = 2 would be increased roughly by
opt

430, near optimum a little less.) From Fig. 5 we see that now <T1 (a) = 135

and a 2(a) = 148, increases from the minimum values of 18 and 27, resp.,

corresponding to increases in the error standard deviations by the factors

AI /18 ; 2.74 and /VI/27 ";2. 34, resp., which would have to be made up

by changing other system parameters to meet the same specified accuracy.

This calculation points out that the error standard deviations are relatively

mildly dependent on pulse modulation bandwidth, within the quasi-stationary

approximation.



It is of considerable interest to compare this

a 2 2
achievable performance, Var( o ) (4.51)(fl/aF)( + with that

achievable in the " pulse-determined" opposite extreme pulse bandwidth

0 F where q is not resolved at all, namely ([1], Eq. 24.b) Var(To )

6(~l/ae~ F - 2 where (see F[1],Eqs. 9 and 10) 0 2 is larger than

( + ) . Thus, set 0 = 8 (a + 12): a general conclusion of [1]

was that, in the threshold case, 8 = 4/3 was optimum, resulting in a pulse

that did not quite resolve the returned signal; adopting this 6 , we see that

in the pulse determined case the achievable accuracy is at best approximately

(24) ( a (Ce 2 12.

Thus the best performance, measured by error standard deviation,

in the fine resolution extreme is only about /24/4. 51 2 times better than

that obtainable in the pulse determined case. Since the processing required

in the latter case is markedly simpler and a priori determined, whenever

only geoid estimation is desired the pulse determined case seems

markedly preferable: such design examples were considered at length in

[13.



IV. DERIVA TIONS

Quasi-stationary case. - The data-dependent part of the log-likelihood ra

which describes the operations on the data Zt, teT, performed by the receiver/

processor is 21, ] the quadratic functional

SQ() . 1 dt Z(tl) dt 2 Z(t 2 ) k(t 1 t 2) (15)

o T

where the kernel k(t, t2 ) is the solution to the integral equation

rl k ( t , t 2)+ R t d t 3 = Rs(t 1 , t 2 ) , t , t T. " (16)

T is the time during which the scattered pulse is received and will be

assumed large relative to the support of R ; rl is the spectral density of

the complex white noise.



Suppose the support of F is small relative to the distance over which

f changes significantly: then, from (la),

2
Rs (tl't 2) gof(tl o; ) (tl-t 2 ) (17)

. , .= f(t l ) a (tl-t )

where E-F * F, * denoting convolution.

Note that if in fact f (t) were independent of t then the signal process

would be wide sense stationary and the integral equation (16)would be easily

solved by the Fourier transform: k(tl, t 2 ) becomes k(t -t 2 ) with Fourier

transform

fI F(w)l 2

T. + fIF (w) I

(The tilda will denote Fourier transform throughout. )

This suggests a "quasi-stationary" solution form under (-17): assume

k(tl1 2 ) = k (tlt 1 -t 2 ) where, Fourier transforming on the second argument

T t1 t2

f,(tl) I F(w)1
.-k (t l , t ) = -)(18)

r + f,(t) ) F(w) .0*1



It may be verified by substitution into (16. using the assumed slow variation

of f with respect to F, that (18)is an approximate solution.

It is to be expected, in view of the discussion in [1], that if dispersed

transmitted pulses are used, the first step upon reception would be pulse

compression and this data is then available for further processing. If the

compressed pulse support is small relative to the distance over which g

changes, we can then reasonably apply the results of this case.

Realization - The quadratic functional Q(Z) given by Eq.15 can be

written in a more special form now using Eq. 18

1 tZ(-iWt )f. (t) F(W)I
Q(Z) j T e z (W).

o T T + f,(t) F(w))Z
0

(Z T(t) E Z(t), tE T, and zero otherwise.) Suppose IF(w) =2 Z2neF/ -F =

lul< O/2, and zero otherwise; then

Sf,(t)

Q(Z)= dt Z(t) (Zt*ht). '1/B+f (t)

o T o *

where hW a 1, 1 uw< /2, and 0 otherwise. It is likely the originally received

data is already approximately so filtered and hence Z Z *ht: if, e.g.,

filtering matched to the transmitted pulse had already been done then

---- S---Z *h ;-with this assumption
t tt

oT (z

which is a weighted sum of the received instantaneous power after filtering

matched to the transmitted pulse.



By definition the maximum likelihood estimator (" MLE ') of the unknown

parameter 0 is that 0 maximizing the log likelihood ratio which here has

the form ( -o +Q(Z)) where [2, p. 177] presently we have

.- 1T d
e R Z-(t- t 2 ) -  k(t, t z )d t d t

1 o TT

1
S 1 dt dwf (t) 9uW)+n ]~* k(t,w).

The necessary conditions for the MLE's 0. are found by setting the derivative

B/b0. of the log likelihood ratio equal to zero:

bf (t)/~O. jztIZ

0 = dt * o t .f

T E /+ f,(t)] Bo - F

It is well known [4] that the correlation matrix of

efficient estimates - those unbaised estimates of minimum possible error

variance whose performance can be achieved asymptotically by MLE's - is

the inverse of the matrix C of elements

C -E tn A (z)
ij 2 . .

1 J

where A(z) is the likelihood ratio and 8 (81' .. M ) is the vector of

unknown parameters. In the present problem (Gaussian signal in white

Gaussian noise) it may be shown [2, p. 179 et. f. ] that

C.. Ji dtl dt2 Rs t' 2  k (tl' tZ
o T 1 j



I (t -t) and k(t I , tZ) = k1 (ti , t1 -t ): the change of variables

(7 etl-t2, u = t1) followed by a Fourier transform on the T variable gives the

representations R (t,w) = f(t) (w) and k (t,w) as given by Eq. (5),
• s

yielding the form

Cij - dt dw . (t)() . k (t, w )

0  T i

where V(w) = IF(W) . Recalling only f, depends on 0, carrying out the

indicated differentiations give s

S 2 2 af a
C..= j dt du iFu) ~ 2
3 T + f (tF() I

To proceed assume that, reasonably,

2TTe /0 Iwl<F0iz
Ip) 2  {( F F F ,

0 , Iw l> 2 , (20)

where F is the energy of the complex modulation (which is twice the energy

of the real, bandpass transmitted waveform). Then

F (af *t/i) (f*t /ae.)
C.. dt 1 3 .(.-9a)

13 Tr [ii I+ f,(t) 2

T2 eF F We now examine the forms (20): they are somewhat involved

though in specific instances numerical integration is straightforward.

As an example of auseful approximation, note f, results from the

convolution of, essentially, the unvariate density function of the gross height

variation and the antenna pattern, as scaled into delay. A reasonable

approximation in the denominator of (20)is arrived at by noting that, ignoring

the sidelobes of the antenna pattern, we can take f,(t) as "pulse-like",

approximately of constant value - say gof(O) (Note (20)does not depend

on T..



Hence (6) becomes setting BF E F/2n and BF.I (flo/ + goo )

C.. =*t dt
ij =  dt

where f(w) =go Kq (w)ph /(c/2)exp(-iwmTo), and ph is the univariate character
1 o

function corresponding to p.

-.-.. ----- --

Consider first finding the covariance matrix of the efficient estimates of

amplitude, delay, and sea state; assume the univariant distribution of the

2
gross waveheight is normal with zero mean and variance oh: then

2 2 2
-0 W /2 (c/2) - iWT

f (W) goK q 1(W) e

-iw7

= g f(w) e

Define aE a h/(c /2) and the vector of unknown parameters 0 e (To , go).

Then we calculate:

C = 1 g * M(1) ,

.0.

C C o0
e12= C1 3 = 0

22
-- C2  =Qg a M(2),

C. = -(go M(1),23 o

C3 =QM(0)

1 2k 2
Here we have defined M(k) / f ()/ dw; of course M(O) e is the

-energy of the function f and, setting M(1).,ef, we may interpret 0 as the



radius of gyration measure of the bandwidth of ft (provided the centroid of

1w.2 is zero). Inverting this matrix we find the variance of the efficient

estimators:
* 1

Var(T ) =2 (a)

o q o M(1)

* 1 1
Var (a ) = 2 2 (21b)

1-p Qg a M(2)

, l 1
Var (g ) - . (2c)

o -p 2 4M(O)

where the correlation coeficient o. of the efficient estimates of sea state and

amplitude is
2

C 2
2 23 M(1) (Zlid)

C 22C33 M(2)M(0)

the efficient estimate T7 of delay is uncorrelated with the other two efficient
0

estimates.

The zero correlation between the delay and sea state efficient estimates holds

more generally. Suppose c h(u;h) = cph(ahU): then the correlation is zero if and

only if the univariate distribution of the gross sea height is even. For then

cp.(u)/a = ucp '(u) and
h h

-iQ g 2- 
. o . K (u) j Wph c /2 h c / 2 ) d./2

~ 2

First note that, as ql is real, q1 I is the sum of the square of an even function

and the square of an odd function and therefore even. Second, as ph is real,



-1
cPh is real and even if and only if ph is even; more generally Re ph p h is

odd - and hence always contributes zero integral - and dw fcphe p is even

and hence can make C non-zero.

We will be able to carry out the integrations

required in Eq. (19a) above if we assume an exponential form, for q:and ch:

let q(W) Iq (0) 1 exp(-.lIW ) and ph(r) = exp (-oh W ). Then

f (t) = g 1E 1+ ()
where 4 + a, a -a /(c/2) and the parameter tE go 1 = K q(0)l is

given explicity in terms of radar system parameters by Eq. 22 of [ 1]:

1= AaQ/(4)3Rr 2 , where TTg o/X . Also from [1], App. III,

X R / Ac. The elements (c..) given by(20)may now be straight-0o 1

forwardly, albeit somewhat laboriously, calculated by residue integration:

C F go T  2+)
11 2TT 2 2 3

."" ") a(.a+ 1)

2
F g 1 rr a -a +3a+l

22 2 . 2 2 3 3
33 T2 10 a (a 3

o a

12 = C13 = 0,

22
.(go 1 a -2a-1

23 2r 2 22 2 3 2" . a . (a+ 1)

20 .

where a 1+ go a o ; recall = 2rr8F F



Defining at go l"'%.,rlo = 2goal F/ 11, we may write the

(c..) in the form
1j

2
a a -1 a a-1

a(a+1) a(a+ 1)

2 3  2 3 2
S a.  (a -1)(a -a + 3a+ 1) a (a -1)(a -a + 3a+1)

22 4 3(+ 1)3 4 a3 (a+.1)2

~2
_a ? . a -1C a a

33 2 3 
4g a

0

0? C O
12 = 13

and
2 2 ~ 2

S a (a -1)(a -2a -1) a (a-l)(a -2a-l)
23 4g 3 2 4g 3 '3 4 a (a+ 1) o a (a+ 1)

Inverting this matrix to find the covariance matrix of the efficient

estimators, the diagonal elements are

* . a(a+ 1)2
Var(T ) = * , (21e)

a a-1

3
* (C (a+ 1)

Var (o) = ,I (21f)
a a-1

and 2
S32go a -a + 3a+1

Var(g o ) = a-i (21g)
a a-1

As an application of these results, consider the choice of best pulse

modulation bandwidth , which enters these error variances only via

2
a 1+ a/F: a can equivalently be chosen, then, to minimize one of these



three forms. It is easily found algebraically that a= 2 minimizes both

Var(a ) and Var(g ) and a = (3 + V)/4 1.8 minimizesVar(r ); further, a

choice of a= 2 increases Var(To) by less than 2%. Thus the choice a= 2 is

S2 2
a very good one; then a/CL= (2nrf (0) F/ )/i2nBF =a (0)/ao is seen to be

(very nearly simultaneously) optimally 3.

This choice of a is allowable provided roughly, the signal-to-noise

ratio is large enough so that the quasi-stationary approximation remains

valid: for this we must have 1/0 F << 0. Since 0/0= 3 (for a= 2),

1/= 3/a = (3/2)(r /o~F)0: thus, more precisely, we must have

o 
- <<1.

F

As will be seen below, this condition is easily met in practice even for a

satellite vehicle. - -

With a = 2, we find

* o 2
Var(To 1+ y) (22a)

F

* 27 o 2
Var(a )= - ) (1+ a) (22b)

F

and

Var(go ) 11 e o
2 2 \ / (ZZc)

go F

the correlation coefficient of the efficient estimates of sea state a and

amplitude go is, in magnitude, 1/ i3, a rather low value in that Var(a ) and

Var(g ") are increased by this correlation only by the factor (33/32).
0



Evaluating the approximate forms given by Eqs. 6 for this particular

.f, we find

Var(" ) 16 ( (Z 3a),
o a F

* 64 T
Var() 3 ))(1+ a)2 (23b)

Var(g ) 32 (c)

go F

and p2= 1/4; here = pt = r~F /4o0 a corresponding to unity SNR was used.

The parameter dependencies enter identically in the exact and appi-oximate

forms. Comparing the error standard deviations, the numerical factors,

in order, are in the exact.calculation (3, 3. 7, 2. 4) and in the approximate

calculation (4, 4. b, 3. 3): these are in good agreement.

A Specific Exact Solution. - Suppose that the reception time is large

relative to the time over which the returned pulse is non-zero, a good

approximation in practice: then in Eq. 4, the integral equation that determines

the kernel function k(t1 , t 2 ) of the optimum processor, we may set T = (-o, -).

Taking the two-dimensional Fourier transform (denoted by a double tilda) of

this equation we find

SR(u 

)k 
v)d 

(uv) 

u 
.

(24)

0 2TT 0-- S



From Eq. 8 of [1] we have (temporarily set T 0)

Rs(u, -v) p (u-v)F (u)F (v)

whe re

- - - u-V

p(u-v) -Kq(u-v) h c/2h cl 2

Again assume rr F

Su 0 F/2,

0 u > F/2; (24a)

then Eq. 22 becomes

0 F F
k l(u, v) + P (u-w)k (W, v)d P (u-v), u, ve (-2 ) (24a)

-F/2
F

where k (u, v) k (u, -v).

The integral equation (22a) satisfied by k 1 is of a type well known in

communication theory (see,. e. g. [3] ). There is a straightforward method

of solution when p is the (one-dimensional) Fourier transform of a rational

function; thus any reasonably behaved q * Ph can be approximated by a

rational function and the corresponding k found - in principle, though the

calculations may be tedious.

To apply this method here assume that

p (u)= a e , - < < a

then p (t) = (a/ 4)Fl+ (t/4)2 ] which roughly approximates a possible q * ph:

it would be desirable perhaps to model the usual asymmetry but this requires

more complication. The solution to Eq. 4b is now easily found by adapting



the solution for an interval (0, CF) found in, e. g., [1 , p. 388, Eq. 1. 46:

Fa K(u) Kf-v) , -0F/2 < u < v < OF/2 ,
k(u, v) = (2)

K(v) K(-u) , -0F/2 <v < u < DF/2 ,

where A

A 8( F/Z+u) -B( F/2+ u)
K(u) = [ (B+ 4)e + ( - )e ]

A A

D y 2" I F (r + Z) e F ( - ) e31 ] -

and 2 / . Of course k itself is now readily found and further

one can show (by an easy argument using the integral equation) that when

7 0,o -iT (u+ v)

e. K(u)K(v), -OF/2 < u < v < CF/2,
k (u, v) = -iT (u+ v)

e o K(-v)K(-u), - F/2 < v < u < QF /2.

A

Suppose PgF >>1: then

, 2 ^u+ VI
k (u, v) ^ e ,-F/2 < uv < l F/2 .° (d+ F)2

A 2 2 2 4T F o
Since 2F = F + " F , it is sufficient for this case to

o

obtain if either

22 
2

C 2 4T .* > > 1 .

P F

that is, the smeared returned pulse is long relative to the transmitted pulse

resolution- or

4Te a 2 r e > >

F F4 =4 . -PF

o o F



that is,- the product of SNR and O/ pF is at least the order of unity. (In

practical designs contemplated these conditions are met.)

We know from [1] that the calculation of Q(z) is realized by the

configuration shown in Figure 1 - because k has the some functional form

S -1
as R which is k (aside from the multiplier i )in the threshold case

S 0

which was discussed there. The final linear, time-invariant filter has a

transfer function

2
•a B e P W1 -_ < w < .

in particular its bandwidth is about

"-1 o 1/2

The result agrees with the same results obtained under the quasi-stationary

approximation.

It would be of interest to use this precise result for calculation of

performance limits and hence the best bandwidth setting for any SNR.

Nonsymmetric Wave Height Distribution. - Although it is often

reasonable to assume a normal univariate density function for the random

gross wave height, it is known even in simple cases that the density function

is only approximately symmetric. It is clear that a nonzero mean can be

completely ambigous with the geoid parameter: see Eq. (1).' Such a

nonzero mean may be associated with a large area current. We therefore

consider a zero mean, nonsymmetric distribution that is a small perturbation

from normal: the Gram-Charlier series r 31 when truncated gives a



convenient representation:. thus assume

22

ha(t) = e / (1 - ie4at
3 )

where -E (h )/3! will generally also be an unknown parameter. We
4a -4

therefore consider the efficient joint estimation of 0 - (To, ,' go 4)'

04 E e4a/(c/2)3 . It will be convenient to write pha(t) = Cph(t) (1-i 4 t3 ) where

22
ph(t) as before is the normal characteristic function (exp (-cht /2) and

keep f and f, unchanged.

The matrix of c.. 's is straightforwardly calculated to be the symmetric
13

matrix

2
M(1)+ 4 M(4)

2 2
0 a o [M(2)+ 6oM(5)]

G g a 2 1 2Sgo -0 -g [M(1)+ B M(4)] l [l+ E M(3)]

o.go

M(2) - 4oM(4) M(3) M(3)
go

Note that if the true (unknown) value of 04 is zero then C becomes

M(1)

Co go 0 a2M(2) ...

0 2
0 a M(1) /g 2

g0  o

M(2) 0 0 M(3)



Then the correlation matrix of the efficient estimates is

1 . 1

1-p M(1)
14

1 1
0 2 2

1 - p 2 3  M(Z)o
23

-1 2 /M()S-o P23 1 2
o . 0. . go

g 2 2 0
1, 23 1- 23

4 /M(2) . 140 0
P14 P14

where

2 M(2)
14 M(1)M(3)

and
2 M(1)

23 M(O)M(2)

The variances of the efficient estimates are, of course, the diagonal elements.

In the more interesting case when the true value of O4 is not zero we

may use the assumption that 04 is small by ignoring the 04 terms to ease the

labor of calculating the inverse C "1 which may then be approximated as

C + 0 C lC C where
o 4 o 1 o

0 0 0

0(g

20 0

0 -oM(4) . M(3)/g 00



-1 -1
It is found that C O C C has zero diagonal elements and hence the variances

of the efficient estimates are unchanged; that (1,4) and (2, 3) elements are

zero and hence the correlation of the efficient estimates 7 and 64 are
o 4

unchanged as with the efficient estimates a and g ; and that the (1, 2), (1, 3)

and (2, 4) elements are nonzero so that there is at least a weak correlation

between all efficient estimates.

Summarizing,

S 1 1 1
Var (T 2 2

cg 1- P M(1)

var(o4 ) "
4 Ig 1 -P M(3)

o 14

• 1 1 1

Var ( )=

qg 1- 23 M(2) Co

and 2
* 1 1 go

Var (go) =

S2go 1- P23 M(O)

Example - Suppose that lq(W) = 2 q(0 )I . exp(-cB i ) so that

where a, = K ql(0)J and V r[2(C+ p)]. We then have M(O) =0 liT V

2 2 2 4 2n 6
M(1) v V ,d (2) 3 / V and M(3) 15

2 2
The correlation coefficients are then = 9/15 and p = 1/3 and

(1 - p ) 15/ 6 and (1 - p ) = 3/2: these are the factors by which the

14 23

various efficient estimates variances are increased by their correlation.



If the signal pulse bandwidth is chosen optimally we have seen l =

opt = (F /4g of r ): but here

1-1
f (0)-f(W)dw /' 1V

so (U'g = 4 1 V /f e g Then

4o 1 15 1 20 o
Var(T )= * - *-

v o a(F o 6 " ii a12,V 3  2rr2 eF v2
o go

a o a1 15 1 4 o
4 6 152 7 6n eF

4r1-P v a* ol 3 1 1 4 o
Var( ) o 3 4 0 -

2 2 2 5 4 2
Jif F o a /- ' 3 "1 n F- av o

and 2 2

* g o 3 go 12 -ogo
Var (go) 2

/Tf g /- 1  V ZTT z f F t
F o F

These results can also be written in the form (in part using the

definition of v)

* 20 o 2 2
Var (, )= T +[2(+ )

0 Zrr/Z e a)F

* 4 o 2(2 23
Var (0 4 ) - 6,/2 e a

F

* 1 2 2
Var (Y ) 4 o "2(1+ Z/ 2)]

G n/Z eF a

and *
Var (go) 12 o

o 2 F
g 21T~ 8 F a



Threshold case. - In the "' threshold case" (in which the estimates

can have arbitrarily good accuracy) we can readily find the structure of the

best estimators and calculate the (Cramer-Rao) lower bound on the

estimator's accuracy. From [1] the best processor calculates the form

K c 2Q() 2 (-t)* 2 t)*F(-t)*z(t) 12

2TJO t= T00 o0

the realization of this calculation by a '!mixed integrator" processor is

discussed in F 1]. We find, by direct calculation, assuming geoid and sea

state unknown,

1 du2dv ~uv) 2  2

11 2 du dv R(u, (U (u+v) , (26a)
(2Tr'0)

C12 - dudv (u, (u+v)

and
4 2 4- 4

C22 Zdu dv S(u,v) 2 (u+v). (26c)
(2n~r0 c) c

Here we also assumed that the univariate sea height distribution is normal

2Z
[4], of zero mean and variance ah ; RS is the two-dimensional Fourier

transform of the signal covariance function R S . Thus [1]

7 -i(u+v)7u+v o
RS(u, v) =K F(u) F (-v) q(u+v) cn (c/2 ) e

where, then F is the signal pulse spectrum (Fourier transform) and CD is

the univariate characteristic function of the random sea height.



We note immediately that since the left side of (25b) is real, the right

side must be zero: that is, the efficient estimates of geoid and sea state are

uncorrelated! Note also that only the modulus F I of the signal pulse

spectrum enters, then, into the accuracies.

If we assume the signal pulse spectrum modulus form given by (20)

and F Q(u ) 12 = 1 (0) exp(- lu /2) , then we can calculate

ZC a 2

11  \ ) .Y 11(aA)

and
,Za c 2 4

= * a)
22 2\ 2 \c/2 22

nO V.

~ N N2 2 2 2
where a- "vF , v n 8 /c +i , .K (0)

A2
2 a a -a /2

Yl(a) - . a~T(a) - 2(1-e-a /2)], - - (27a)
11 2

Y22 (a ) -- (3^ () - 8[1-(1 2/8)e 212 , (27b)

a

and, finally,
a 2

Y(T) a f e dx.
JO

Note that since the matrix of elements c.. is diagonal we have, as

2
aforementioned, the efficient estimates T' and (a )* uncorrelated and their

n

error variances are just the reciprocals of (26a) and (2 6c) . These forms can

now be used to make inferences about good system design just as in [ 1].

For example, note that the pulse modulation bandwidth 0F enters forms

(26a) and (26c) only as a = F in the arguments of yll andy 2 2 , resp.
F 1 z



Uncorrelated estimates. - We have, in the course of the above

calculations, showed that the efficient estimators of geoid and sea state are

uncorrelated when the univariate probability density of sea heigh is Gaussian.

We now show that it is the property of evenness of the density function

that is sufficient for this property of the efficient estimates. (We are still

assuming the threshold case.)

Recalculating (3) using (5) for an arbitrary characteristic function

p (u) E (a u), the required derivative bcD (u)/aa = u '(a u) =U pn'(u ).

Then we may write

12 S du G (u) du G(v)H(u-v)

u u 2
where G(u) = IF(u) I and H(u) (u) (c ( ) u . Set I equal to

i times the double integral: then by Parseval's theorem we may write

2
I =it !G(t) H(t)dt.

-J

In what follows denote the real part of a complex-valued function F by FR

and the imaginary part by F .

We first note that since, in view of its definition, G is real, G R is

even and G is odd and therefore 1 2 2
even and G is odd and therefore IG = G + G is even . Similarly of

t t

real implies I 2 even.

We also note that the realness of pn implies epR is even and

p is odd (cp 0 if and only if p is even); hence cp' is odd and cp' is
n In I=n nR n

even and so ftpn c ' R is odd and f cp C n I is even (tepcPn' e0 if and only
n is eve n R is odd and I even, implying H is purely

if P n is even). Thus H R is odd and is even, implying H is purely



imaginary - thus checking that I is in fact real - and it will be odd if and

only if pn is even.

Thus finally I = - G(t) 2 H (t)dt will be zero if H is odd which is

true if and only if pn is even.
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APPENDIX

It is of interest to review the situation when the scattering mechanism

is not random so that a signal known except for delay and spread is received

in white, thermal noise. The well-known theory [3]) for this model gives,

e. g.,

__ 2
C S(w)dw (A.1)12 21n 0 (A.)

0 - o h

where

S(t) = F(t-To-n) h p)dy (A. 2)

so that
-iw

S(w) F(w)cp( )e o. (A. 2a)

Again, as above, assume p ()= ( w): Then acp (u~/a =w$ '(a w) =p '(),
h hh h h h h h

2 2 -iw 7
S(w) =- W F(w) ' (-) e 0

BT c.2 h /2
o h

and
1 2- 2

C = Re i ! F(w) 1 -(-CP )c I W dw. (A. la)
12 2 TT h c/2 h c/2 cA

It is immediately clear that if cph is real - which is true if and only

if Pn is even - then C 12 = 0: that is, the efficient estimates of delay and

spread are uncorrelated. We have already observed that Refi cphp h  =

(ep hcp)I is even and zero if and only if pn is even.

We can also calculate readily

C11 " 2 E 1nA - 2n1 fw 2LF(w) Cph(W)1 dw (A.3)

0

and



C -Efn 1 4 2
C22 E 2 enA = w F(() cp(! dw (A. 4)

h
2 ), a normal characteristic2

where we have assumed Cph(w) = exp(-a h w /2), a normal characteristic

function.

If we assume, for ease of calculation,
-w2/2 2

IF(w) 1= /8F e F (A. 3a)

then

F 1

11 3 2 2 3/2
2r 10 ah [2(1+1/fF

h

and

F 3 1
C 3 (A. 4a)

22 5 4 2 2 5/2
02 nOh 4 2 (+l/OF ch .

The essential dependence of these forms on 0F is shown in Fig. A.1

It is clear that f a small integer of multiple of 1/ah essentially

achieves the maximum value in C11 and C22 insofar as they depend on f)F

In this the results agree with the results for geoid and sea state estimation

in the threshold case.



LIST OF CAPTIONS

Figure 1. - Geometry of radar altimeter. The coordinates are (x, y, z),
where the x and z directions are the vehicle velocity vector
v and the local vertical directions respectively. The antenna
aperture is A and the nominal antenna pattern B has nominal
beamwidth 5 : F is an instantaneous radiated pulse position.
The geoid G and sea surface ' are separated by h(x, y); the
geoid G has least range z =R at (x =0, y = 0).

Figure 2.- Realization of optimum processor when preprocessing SNR
is small. A is a bandpass filter matched to the complex
modulation F, B is an envelope-squared detector, and C and
D are lowpass filters matched to q and ph, respectively.

Figure 3. - Weighting function w(t) - f_(t)[ n /8+ f(t)] - 1 for specific
f as a function of y fo(0)7(~0/fo

Figure 4. - The weighting functions f v.(t)3 appearing in likelihood equations.

2 ~
Figure 5. - Dependence of i(a) on a, where a 1 + a/F; (see Eqs. Zle,

21f, 21g).

Figure 6.- Dependence of 'll a) and Y22(a) an a F
VF .
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Fig.1.Geometry of radar altimeter. The coordinates are (xy.z),
where the x and z directions are the vehicle velocity vector v and the
local vertical directions respectively. The antenna aperture is A and
the nominal antenna pattern 8 has nominal beamwidth fl; F is an
instantaneous radiated pulse position. The geoid G and sea surface
Y are separated by h (xy); the geoid G has least range z = Ro at
(x 0, Y =0).
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Fig 2. Realization of optimum processor when preprocessing
SNR is small. A is a bandpass filter matched to the complex modu-
lation F, B is an envelope-squared detector, and C and D are low-
pass filters matched to q and p., respectively.
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